YData Profiling

Pandas Basics

1 min read

Published Sep 29 2025, updated Oct 24 2025


21
0
0
0

PandasPython

YData Profiling (formerly Pandas Profiling) is a tool that automatically generates detailed exploratory data analysis (EDA) reports from a pandas DataFrame.


YData Profilling Demo


It provides summaries such as:

  • Data types and missing values
  • Descriptive statistics
  • Correlations between features
  • Duplicates, distributions, and warnings
  • Interactive visualisations

It’s a great first step after loading a dataset into pandas — saving you hours of manual exploration.




Installation

You can install it via pip:

pip install ydata-profiling

If you’re using Jupyter notebooks, restart the kernel after installing.




Basic Usage with Pandas

import pandas as pd
from ydata_profiling import ProfileReport

# Example dataset
df = pd.read_csv("data.csv")

# Create a basic profile report
profile = ProfileReport(df)

# for Jupyter display
profile.to_notebook_iframe()

Alternatively, export to an HTML file:

profile.to_file("data_profile.html")




Key Options in ProfileReport

  • minimal - Creates a lighter, faster report (no correlations, fewer visuals) eg. ProfileReport(df, minimal=True)
  • explorative - Adds interactive, advanced visuals eg. ProfileReport(df, explorative=True)
  • title - Sets a custom report title eg. ProfileReport(df, title="Customer Data Profiling")
  • samples - Number of samples shown per column eg. ProfileReport(df, samples={"head": 5, "tail": 5})
  • correlations - Controls correlation methods eg. ProfileReport(df, correlations={"pearson": {"calculate": True}})
  • config_file - Load a YAML config for advanced setups eg. ProfileReport(df, config_file="profile_config.yaml")



Typical Workflow

import pandas as pd
from ydata_profiling import ProfileReport

# 1. Load your data
df = pd.read_csv("dataset.csv")

# 2. Inspect data quickly
print(df.info())
print(df.describe())

# 3. Generate the profiling report
profile = ProfileReport(df, title="EDA Report", explorative=True)

# 4. Display in notebook or export Inline in Jupyter
profile.to_notebook_iframe()

# or Export to file
# profile.to_file("report.html")



When to Use

Use YData Profiling right after loading — it’s ideal for:

  • Understanding dataset structure
  • Detecting missing or inconsistent data
  • Spotting potential outliers
  • Getting a quick sense of correlations or redundancy

Products from our shop

Docker Cheat Sheet - Print at Home Designs

Docker Cheat Sheet - Print at Home Designs

Docker Cheat Sheet Mouse Mat

Docker Cheat Sheet Mouse Mat

Docker Cheat Sheet Travel Mug

Docker Cheat Sheet Travel Mug

Docker Cheat Sheet Mug

Docker Cheat Sheet Mug

Vim Cheat Sheet - Print at Home Designs

Vim Cheat Sheet - Print at Home Designs

Vim Cheat Sheet Mouse Mat

Vim Cheat Sheet Mouse Mat

Vim Cheat Sheet Travel Mug

Vim Cheat Sheet Travel Mug

Vim Cheat Sheet Mug

Vim Cheat Sheet Mug

SimpleSteps.guide branded Travel Mug

SimpleSteps.guide branded Travel Mug

Developer Excuse Javascript - Travel Mug

Developer Excuse Javascript - Travel Mug

Developer Excuse Javascript Embroidered T-Shirt - Dark

Developer Excuse Javascript Embroidered T-Shirt - Dark

Developer Excuse Javascript Embroidered T-Shirt - Light

Developer Excuse Javascript Embroidered T-Shirt - Light

Developer Excuse Javascript Mug - White

Developer Excuse Javascript Mug - White

Developer Excuse Javascript Mug - Black

Developer Excuse Javascript Mug - Black

SimpleSteps.guide branded stainless steel water bottle

SimpleSteps.guide branded stainless steel water bottle

Developer Excuse Javascript Hoodie - Light

Developer Excuse Javascript Hoodie - Light

Developer Excuse Javascript Hoodie - Dark

Developer Excuse Javascript Hoodie - Dark

© 2025 SimpleSteps.guide
AboutFAQPoliciesContact